Degree of compaction, aeration, and soil water retention indices of a sugarcane field without soil disturbance after initial tillage

Author:

Awe Gabriel Oladele1ORCID,Fontanela Eracilda2,Reichert José Miguel3

Affiliation:

1. Department of Soil Resources and Environmental Management, Faculty of Agricultural Sciences, Ekiti State University, Ado Ekiti, Nigeria

2. Agricultural Engineering Department, Universidade do Pampa (UNIPAMPA), Alegrete-RS, Brazil

3. Soils Department, Federal University of Santa Maria (UFSM), Santa Maria-RS, Brazil

Abstract

Soil compaction after initial soil tillage for crop establishment has been a major problem in crop fields because of its deleterious effects on soil functioning and crop performance. Therefore, the study aimed to determine the degree of compaction, soil air capacity, near-surface optimum ratios, and water retention characteristics in a sandy loam. Dystrophic Paleudalf initially under different tillage methods for sugarcane crop but without tillage for two seasons in southern Brazil. Initial soil tillage systems consisted of no-tillage (NT), compacted no-tillage (NTC), conventional tillage, and chiseling of no-tillage (Ch). Disturbed and undisturbed soil was sampled from 0 to 10, 10 to 20, 20 to 40, and 40 to 60 cm layers to determine degree of compaction, air capacity, near-surface optimum ratios, soil water retention characteristics, and soil physical quality index S. Initially, NT treatment had the significantly ( p < 0.05) lowest degree of compaction (87%), highest soil air capacity (0.104 cm3 cm−3), air capacity/total porosity ratio (0.261), and better water retention characteristics in the surface layer. Over time, Ch had improved the structure of the subsurface soil layers with the lowest degree of compaction (≈88%) and highest air capacity (≈0.140 cm3 cm−3), while the measured indices were poor in NTC. Irrespective of tillage, the surface layer showed resilience during the years without soil disturbance with low degree of compaction, increased water retention, and air capacity. NT could be a good soil management option for sugarcane production, while mechanical chiseling is advocated for ameliorating compacted soils.

Funder

National Council for Scientific and Technological Development

Coordination for the Improvement of Higher Education Personnel

Tertiary Education Trust Fund, Nigeria

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3