Soil thermal properties: influence of no-till cover crops

Author:

Haque Md Ariful1ORCID,Ku Seockmo1ORCID,Haruna Samuel I.2ORCID

Affiliation:

1. Department of Food Science and Technology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA

2. School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA

Abstract

Soil thermal properties, which determine heat transport, can influence soil health parameters and crop productivity. The objective of this study was to evaluate the 2-year effects of no-till cover crops (CCs) and no-till no cover crop (NC) on soil thermal properties (thermal conductivity (λ), volumetric heat capacity ( CV), and thermal diffusivity ( D)). Two levels of CCs were used for this study: CC versus NC. The CCs included crimson clover ( Trifolium incarnatum L.), hairy vetch ( Vicia villosa Roth.), winter peas ( Lathyrus hirsutus L.), oats ( Avena sativa), winter wheat ( Triticum aestivum L.), triticale ( Triticale hexaploide Lart.), flax ( Linum usitassimum L.), and barley ( Hordeum vulgare L.). Soil samples were collected at 0–10, 10–20, and 20–30 cm depths and their λ, CV, and D were measured in the laboratory. Additionally, soil organic carbon, bulk density (BD), and volumetric water content (ϴ) at saturation, −33 kPa, and −100 kPa soil water pressures were measured. Results showed that BD was 18% and 14% higher under CC compared with NC management during 2021 and 2022, respectively. Furthermore, ϴ at all measured soil water pressures was slightly higher under CC compared with NC management during both years. As a result, λ and D were significantly higher under NC compared with CC management, while CV was significantly higher under CC compared with NC management, during both years and at all measured soil water pressures. Generally, soil thermal properties were directly proportional to ϴ, suggesting that ϴ may be the most important factor influencing soil thermal properties.

Funder

Southern SARE

Publisher

Canadian Science Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3