Impacts of coarse-resolution soil maps and high-resolution digital-elevation-model-generated attributes on modelling forest soil zinc and copper

Author:

Zhao Zhengyong1,Yang Qi1,Ding Xiaogang2,Xing Zisheng3

Affiliation:

1. Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, People’s Republic of China.

2. Guangdong Academy of Forestry, Guangzhou, Guangdong 510520, People’s Republic of China.

3. Brandon Research and Development Centre, Portage, MB R1N 3V6, Canada.

Abstract

The depth-specific zinc (Zn) and copper (Cu) maps with high resolution (i.e., ≤10 m) are important for soil and forest management and conservation. The objective of this study was to assess the effects of easily accessible model inputs, i.e., existing coarse-resolution parent material, pH, and soil texture maps with 1:1 800 000–2 800 000 scale and nine digital elevation model (DEM)-generated terrain attributes with 10 m resolution, on modelling Zn and Cu distributions of forest soil over a large area (e.g., thousands of km2). A total of 511 artificial neural network (ANN) models for each depth (20 cm increments to 100 cm) were built and evaluated by a 10-fold cross-validation with 385 soil profiles from the Yunfu forest, South China, about 4915 km2 areas. The results indicated that the optimal models for five depths engaged five to seven DEM-generated attributes together with three coarse-resolution soil attributes as inputs, respectively, and accuracies for estimating Zn and Cu varied with R2 of 0.76–0.85 and relative overall accuracy ±10% of 74%–86%. The produced maps showed that DEM-generated sediment delivery ratio, topographic position index (TPI), and aspect were the most important attributes for predicting Cu, but flow length, TPI, and slope were for Zn, which heavily affected Zn and Cu distributions in detail. Boundaries of three coarse-resolution maps were still visible in the generated maps indicated that the maps affected the distributions of Zn and Cu in large scales. Thus, the modelling method, i.e., developing ANN models with k-fold cross-validation, can be used to map high-resolution Zn and Cu over a large area.

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3