Affiliation:
1. Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Room E-7616, Baltimore, MD 21205, USA.
2. Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA.
Abstract
Airway hyperresponsiveness is the excessive narrowing of the airway lumen caused by stimuli that would cause little or no narrowing in the normal individual. It is one of the cardinal features of asthma, but its mechanisms remain unexplained. In asthma, the key end-effector of acute airway narrowing is contraction of the airway smooth muscle cell that is driven by myosin motors exerting their mechanical effects within an integrated cytoskeletal scaffolding. In just the past few years, however, our understanding of the rules that govern muscle biophysics has dramatically changed, as has their classical relationship to airway mechanics. It has become well established, for example, that muscle length is equilibrated dynamically rather than statically, and that in a dynamic setting nonclassical features of muscle biophysics come to the forefront, including unanticipated interactions between the muscle and its time-varying load, as well as the ability of the muscle cell to adapt (remodel) its internal microstructure rapidly in response to its ever-changing mechanical environment. Here, we consider some of these emerging concepts and, in particular, focus on structural remodeling of the airway smooth muscle cell as it relates to excessive airway narrowing in asthma.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Pharmacology,General Medicine,Physiology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献