Role of ambient light in structuring north-temperate fish communities: potential effects of increasing dissolved organic carbon concentration with a changing climate

Author:

Stasko Ashley D.1,Gunn John M.1,Johnston Tom A.12

Affiliation:

1. Cooperative Freshwater Ecology Unit, Living With Lakes Centre, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada.

2. Ontario Ministry of Natural Resources, Cooperative Freshwater Ecology Unit, Living With Lakes Centre, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada.

Abstract

The vertical light environment in freshwater lakes is sensitive to changes in dissolved organic carbon (DOC) concentrations, and DOC concentrations in most boreal lakes appear to be increasing as the climate changes. Understanding how DOC dynamics in lakes and watersheds are then linked to fish habitat is therefore critical to assessing the effects of climate change on fish communities. This paper reviews the evidence for climate-induced alterations to DOC in north-temperate watersheds and assesses the potential consequences of the resultant decreases in water clarity on fish production and community structure in small boreal lakes (<500 ha). Although DOC increases are forecast for most boreal lakes, complex interactions between local climate, rates of terrestrial organic matter decomposition and runoff, existing water quality, species shifts in forest communities, and changing season lengths can all combine to affect the magnitude of water clarity declines that will occur in individual lakes. Elevated DOC concentrations will affect the availability of coldwater versus warmwater habitat and niche characteristics that are dependent on lake depth, water clarity, and the preferences and physiological tolerances of the individual species. The shifts in availability of suitable thermal habitat will in turn affect fish growth, production, and community composition. Range expansions for warmwater species and range reductions for coldwater species will likely occur in warmer, darker environments, with adverse consequences for some native species and likely advantages for invasive species such as smallmouth bass. Likewise, major shifts in trophic dynamics would accompany the darkening of boreal lakes as species-specific feeding efficiencies change and primary and secondary production are altered. From a beneficial perspective, elevated DOC concentrations will likely relieve some physiological stress in biota via protection against contaminant toxicity and ultraviolet radiation (UVR) exposure. As with many other disturbances, we need to view climate change impacts on fish communities as a multiple stressor problem and the potential impacts of the changing light environment needs to be given as much prominence as the study of stressors such as eutrophication and trace contaminants.

Publisher

Canadian Science Publishing

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3