CALCULATION OF THE SELF-BROADENING OF RAMAN LINES DUE TO DIPOLAR AND QUADRUPOLAR FORCES

Author:

Kranendonk J. Van

Abstract

The impact theory of Raman line broadening due to anisotropic intermolecular forces, developed previously, is applied to the broadening due to dipolar and quadrupolar forces. The optical cross sections are calculated assuming the isotropic intermolecular potential to be a hard-sphere potential, and neglecting the spread in velocities. Explicit expressions are derived for the phase-shift contribution to the width of the isotropic (j = 0) and anisotropic (j = 2) Raman scattered light as a function of the rotational quantum number J. For j = 2 scattering the phase shifts produced in the radiation do not vanish when the initial and final states of the radiation process are identical, and the phase-shift contribution to the width of the anisotropic components of the Q lines is of the same order of magnitude as for the S lines. In all cases the phase-shift contribution tends to zero when J becomes large compared with j. The contribution to the width of the inelastic collisions also tends to zero for large J, but this is characteristic of the long-range interactions considered here and results from the correspondingly short range of the resonance factors. The theory is compared with the available experimental data on H2 and N2. It is pointed out that quite generally an observation of the broadening of the isotropic and anisotropic Raman lines allows a determination of the lifetimes of the rotational levels and of the phase-shift contributions to the width of the anisotropic lines.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 108 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3