Synthesis and characterization of picryl cellulose

Author:

Strauss Michael J.,Torres Reuben,Phelan John,Craft Andy,Pitner Bruce,Nason Deane,Carignan Yvon,Dust Julian M.,Buncel Erwin

Abstract

2,4,6-Trinitrophenyl cellulose (picryl cellulose) was synthesized by SNAr displacement of chloride from picryl chloride by sodium cellulosate. The cellulosate was prepared insitu from microcrystalline cellulose and sodium methoxide. Depending upon the procedure used, two products with different degrees of picrylation resulted; one contained one picryl ring per ca. 6.5 glucosyl units (PC-6), while the other had ca. one picryl ring per 12 (PC-12). These picryl ethers were characterized by several independent methods: 400-MHz 1H nuclear magnetic resonance spectroscopy of the DMSO-soluble material, temperature-dependent mass spectrometry (ion pyrograms), and differential scanning calorimetry (DSC). The nuclear magnetic resonance spectrum displays peaks in the low field region (8–9.5 ppm) assigned to the picryl rings; these resonances are well separated from those for possible alternative compounds such as unreacted picryl chloride, picric acid, or 2,4,6-trinitroanisole. It is suggested that the various picryl resonances arise primarily from different microenvironments and (or) conformational preferences of the polymer chain rather than from different substitution sites. Substitution at a primary C-6 position of the glucosyl moiety is favoured. DSC shows that while cellulose undergoes an endothermic decomposition between 320 and 350 °C, picryl cellulose exhibits an exothermic decomposition at ca. 230 °C. This exotherm is accompanied by the liberation of picric acid, as confirmed by nuclear magnetic resonance; mass spectral results indicate concurrent chain cleavage to yield smaller polysaccharides. A mechanism for initiation of pyrolytic decomposition is proposed, in which loss of picric acid is accompanied by rupture of a glycosidic bond with concomitant formation of glucosan and enolic end groups on the remaining fragments.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3