Experimental investigation of the effects of turbulence intensity on frazil ice characteristics

Author:

Clark Shawn12,Doering John12

Affiliation:

1. Hydraulic Research and Testing Facility, Department of Civil Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada.

2. Department of Civil Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada.

Abstract

The counter-rotating flume at the University of Manitoba was used to conduct a series of 21 laboratory experiments to investigate the effects of turbulence intensity on frazil ice formation and evolution. A detailed study of the velocity and turbulence intensity distributions within the counter-rotating flume was initially conducted using a constant-temperature anemometer equipped with a one-dimensional conical hot-film probe. Five levels of turbulence intensity were generated by five different sets of bed plates and flume wall rotation rates in order to study how turbulence affected the frazil particle size distributions and the statistics related to clear disk-shaped particles. It was found that a lognormal distribution could not be rejected when describing the frazil particle size distributions, regardless of the turbulence intensity of the water. The variation of the mean and standard deviation of particle diameter with turbulence intensity are well described by a parabolic shape. A preliminary equation to describe the variation of the mean and standard deviation of particle diameter as a function of turbulence intensity and time is presented.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

Reference15 articles.

1. Friction velocity and power law velocity profile in smooth and rough shallow open channel flows

2. A Computational Approach to Edge Detection

3. Clark, S.P. 2006. An experimental study of the formation and evolution of frazil ice. Ph.D. thesis. Department of Civil Engineering, University of Manitoba, Winnipeg, Man.

4. Laboratory Experiments on Frazil-Size Characteristics in a Counterrotating Flume

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3