Abstract
High-speed cinematography was employed to study the mechanics of prey capture in Anolis equestris. Capture of live prey (adult locusts) consists of a cyclic movement of the upper and lower jaws combined with tongue protraction. Kinematic profiles are presented for the jaws, tongue, and forelimbs. The tongue is projected during the "slow open" stage and most of the "fast open" stage. The tongue protrudes beyond the mandibular symphysis during the slow open stage, and rotates simultaneously around a transverse anteromedian axis. The prey is thus contacted by the dorsal sticky surface of the tongue, and then pulled backward into the oral cavity by a combination of a forward movement of the jaws and retraction of the tongue. Gape angle, defined as the angle between the upper and lower jaws, continues to increase during the initial stages of tongue retraction. During the capture process, the anterior part of the body lunges forward, followed by a return to its original position; this displacement is mediated by the forelimbs, which usually remain well anchored to the floor. The cyclic food-capture movements of the jaws and tongue–hyoid system in A. equestris (Iguanidae) and Chameleo dilepis (Chamaeleontidae) are compared. I argue that one of the primary selection forces in the evolution of the different mechanisms of prey prehension in these two lizard groups was enhancement of the locomotor system and, consequently, foraging ability.
Publisher
Canadian Science Publishing
Subject
Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献