Conversion of dense lodgepole pine stands in west-central British Columbia into young lodgepole pine plantations using prescribed fire. 1. Biomass consumption during burning treatments

Author:

Blackwell B.,Feller M.C.,Trowbridge R.

Abstract

The ecological effects of different treatments used to convert dense Pinuscontorta var. latifolia Engelm. stands into young P. contorta plantations are determined. The treatments used were felling the trees with a bulldozer and either broadcast burning the slash or bulldozing the slash into windrows, which were then burned. Burns were conducted under different fuel moisture conditions and state of fuel curing to achieve four classes of fire severity. The preburn surface fuel load was relatively high due largely to fallen dead woody materials (10−21 kg/m2). The biomass of the forest floor (5−10 kg/m2) was similar to that of the tree slash (5−13 kg/m2), while the understory vegetation was a minor component (0.3−0.5 kg/m2). The quantity of slash and understory vegetation consumed by burning increased with the preburn mass of the same components. Forest floor consumption depended primarily on the preburn forest floor mass for windrow burns and on forest floor moisture content as well as preburn forest floor mass for broadcast burns. Fire severity generally did not have a strong influence on biomass consumption, although it did significantly influence forest floor consumption. There was a general trend, however, of increasing biomass consumption in broadcast burns with increasing fire severity. Windrow burning consumed more biomass than did broadcast burning under similar weather and fuel moisture conditions. Windrow burning resulted in uniformly high biomass consumption that was relatively independent of fuel moisture over the wide range of fuel moistures studied.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3