On the role of octopine dehydrogenase in cephalopod mantle muscle metabolism

Author:

Fields Jeremy H. A.,Baldwin John,Hochachka Peter W.

Abstract

Octopine dehydrogenases from the mantle muscle of the squid, Symplectoteuthis oualaniensis, and of the octopus, Octopus ornatus, were kinetically characterized and compared. In the squid, the specific activity of the enzyme was about 110 μmol product formed per minute per gram wet weight; in the octopus that value was over 600. Both enzymes show similar pH dependence; in the direction of octopine formation the pH optimum was about 6.5, whereas in the direction of octopine oxidation it was about 8.5. The affinities for NADH, arginine, and pyruvate were similar (Km values were about 0.04 mM, 7 mM, and 2 mM respectively). Increasing the concentration of either arginine or pyruvate increased the affinity for the cosubstrate (pyruvate or arginine), this mechanism being a means of regulating the enzyme activity in vivo. In the direction of octopine oxidation, the octopus enzyme showed a much higher affinity for octopine (Km = 0.8 mM) than did the squid enzyme (Km = 4.4 mM), suggesting that it may be better geared for reconverting octopine to arginine and pyruvate after anaerobic bursts of muscle activity.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3