Affiliation:
1. Department of Human Health and Nutritional Sciences, Animal Science and Nutrition Building, University of Guelph, Guelph, ON N1G 2W1, Canada.
Abstract
Adiponectin, a protein secreted from adipose tissue, has been shown to have anti-diabetic and anti-inflammatory effects, but its regulation is not completely understood. Long-chain n-3 fatty acids eicosapentaenoic acid (20:5n-3; EPA) and docosahexaenoic acid (22:6n-3; DHA) may be involved in adiponectin regulation as they are potential ligands for peroxisome proliferator-activated receptor-γ (PPARγ), a key transcription factor for the adiponectin gene. To examine this, 3T3-L1 adipocytes were incubated with 125 µmol·L–1EPA, DHA, palmitic, or oleic acids complexed to albumin, or with albumin alone (control) for 24 h. Adipocytes were also incubated for 24 h with EPA and DHA plus bisphenol-A-diglycidyl ether (BADGE), a PPARγ antagonist. Both EPA and DHA increased (p < 0.05) secreted adiponectin concentration compared with the control (44% and 102%, respectively), but did not affect cellular adiponectin protein content. Incubation with BADGE and DHA inhibited increases in secreted adiponectin protein, suggesting that DHA may act through a PPARγ-dependent mechanism. However, BADGE had no effect on EPA-induced increases in secreted adiponectin protein. Only DHA enhanced (p < 0.05) PPARγ and adiponectin mRNA expression compared wtih the control. Our results demonstrate that DHA increases cellular adiponectin mRNA and secreted adiponectin protein in 3T3-L1 adipocytes, possibly by a mechanism involving PPARγ. Moreover, DHA increased adiponectin concentration to a greater extent (40% more, p < 0.05) compared with EPA, emphasizing the need to consider the independent actions of EPA and DHA in adipocytes.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism
Cited by
98 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献