Ultrastructure of Saccharomyces cerevisiae strain AG1-7 and its responses to changes in environment

Author:

Willison J. H. M.,Johnston G. C.

Abstract

Asynchronous populations of the budding yeast Saccharomyces cerevisiae strain AG1-7 were examined by freeze-fracture electron microscopy for ultrastructural changes occurring in response to changes in the environment, specifically the following: temperature (23 or 37 °C); cell density (exponential, early stationary, and stationary phases); various periods of nitrogen starvation at low cell density, and return of nitrogen-starved cells to nitrogen-replete medium. This information has been gathered in preparation for ultrastructural examination of comparable responses of temperature-sensitive cell-cycle mutants. The plasma membrane was found to be particularly responsive to changes in environment. A high proportion (75%) of cells in exponential phase populations at 37 °C displayed paracrystalline arrays of plasma membrane particles, whereas this proportion was much lower (20%) at 23 °C in the same medium; plasma membrane grooves were longer at 37 than at 23 °C. In budded cells, the mother cell displayed paracrystalline arrays more frequently than the bud. Entry of cells into stationary phase, either through permitting population growth or by limiting nitrogen supply, resulted in increases in numbers of paracrystalline arrays and grooves. Groove depth also increased. The paracrystalline-array and groove-density responses were independent, both during entry into stationary phase and during the subsequent lag phase. Unusual groove forms appeared during stationary phase in high cell density populations, but not in low cell density nitrogen-starved populations. "Aggregate" and "geometric" tonoplast forms, previously described in strain A364A when grown under some of the conditions used here, were not found in AG1-7 under any of the conditions used here. It was demonstrated that particle-free patches can arise rapidly on the tonoplast of AG1-7 in response to temperature change from 37 to 23 °C. During stationary phase, spherosomes (lipid droplets) increased in size, particularly in response to nitrogen depletion. After 72 h of nitrogen starvation, about 10% of cell volume consisted of spherosomes. Changes in vacuolar content and mitochondrial form were also noted during entry into stationary phase.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3