PKCα–GSK3β–NF-κB signaling pathway and the possible involvement of TRIM21 in TRAIL-induced apoptosis

Author:

Gao Xuejuan1,Xu Fengmei1,Zhang Huan-Tian2,Chen Miaojuan3,Huang Wensi1,Zhang Qihao4,Zeng Qingzhong1,Liu Langxia1

Affiliation:

1. Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China.

2. Institute of Orthopedic Diseases and Department of Orthopedics, the First Affiliated Hospital, Jinan University, Guangzhou 510630, China.

3. Department of Interventional Radiology and Vascular Anomalies, Guangzhou Women and Children’s Medical Center, Guangzhou 510623, China.

4. Institute of Biomedicine, and National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China.

Abstract

Tumor necrosis factor related apoptosis-inducing ligand (TRAIL) is a highly promising therapeutic agent for cancer treatment, owing to its ability to selectively target tumor cells for cell death while having little effect on most normal cells. However, recent research has found that many cancers, including non-small cell lung cancer (NSCLC), display resistance to TRAIL. Therefore, it is important to elucidate the molecular mechanisms governing the resistance of tumor cells to TRAIL treatment. In this study, we show that GSK3β antagonized TRAIL-induced apoptosis in H1299 NSCLC cells, and determined that the PKCα isozyme is an upstream regulator of GSK3β that phosphorylates and inactivates GSK3β, thereby sensitizing cancer cells to TRAIL-induced apoptosis. Furthermore, we demonstrated that the anti-apoptotic effect of GSK3β is mediated by the NF-κB pathway, whereas the tripartite motif 21 (TRIM21) was able to inhibit the activation of NF-κB by GSK3β, and leads to the promotion of cell apoptosis. Taken together, our study further delineated the underpinning mechanism of resistance to TRAIL-induced apoptosis in H1299 cells, and provided new clues for sensitizing NSCLC cells to TRAIL therapy.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3