Physico-chemical and in-silico analysis of a phytocystatin purified from Brassica juncea cultivar RoAgro 5444

Author:

Khan Shumaila1,Ahmad Sabahuddin2,Siddiqi Mohammad Imran2,Bano Bilqees1

Affiliation:

1. Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh 202002, India.

2. Molecular and Structural Biology Division, Council of Scientific and Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, Uttar Pradesh, India.

Abstract

This study describes the isolation and purification of a phytocystatin from seeds of Brassica juncea (Indian mustard; cultivar RoAgro 5444), which is an important oilseed crop both agriculturally and economically. The protein was purified by gel filtration chromatography with 24.3% yield and 204-fold purification, and visualised by 2D gel electrophoresis. The 18.1 kDa mustard cystatin was highly specific for cysteine proteinases. The plant cystatin inhibited cathepsin B, confirming its role in conferring pest resistance. The inhibitor was highly stable over a pH range of 3–10 and retained significant inhibitory potential up to 70 °C. The stoichiometry of its interaction with papain, determined by isothermal calorimetry, suggests a 1:1 complex. Secondary structural elements calculated by far-UV circular dichroism (CD) spectroscopy show an 18.8% α-helical and 21% β-sheet structure. The protein was a non-competitive inhibitor of thiol proteinases. The Stokes radius and frictional co-efficient were used to describe the shape and size of the protein. Homology modelling and docking studies proposed a prototype illustrating the Brassica phytocystatin mediated papain inhibition. Molecular dynamics (MD) study revealed the excellent stability of the papain–phytocystatin complex during a simulation for 100 ns. Detailed results identify the mustard cystatin as an important member of the phytocystatin family.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3