Approaches used to examine the mechanism and regulation of hexose transport in rat myoblasts

Author:

D'Amore Tony,Lo Theodore C. Y.

Abstract

This review discusses some of the approaches and general criteria that we have used to examine the properties of the hexose transport system in undifferentiated L6 rat myoblasts. These approaches include studying the kinetics of hexose transport in whole cells and plasma membrane vesicles, the effects of various inhibitors on hexose transport, the isolation and characterization of hexose transport mutants, and the use of cytochalasin B (CB) to identify the transport component(s). Transport kinetics indicated that two transport systems are present in these cells. 2-Deoxy-D-glucose is transported primarily by the high affinity system, whereas 3-O-methyl-D-glucose is transported by the low affinity system. Furthermore, these two transport systems are inactivated to different extents by CB. CB has a higher binding affinity for the low affinity hexose transport system. The inhibitory effect of various hexose analogues also revealed the presence of two hexose transport systems. The effects of various ionophores and energy uncouplers on hexose transport suggest that the high affinity system is an active transport process, whereas the low affinity system is of the facilitated diffusion type. The high affinity system is also sensitive to sulfhydryl reagents, whereas the low affinity system is not. Further evidence for the presence of two transport systems comes from the characterization of hexose transport mutants. Two of the mutants isolated are shown to be defective in the high affinity transport system, but not in the low affinity transport system. These mutants are also defective in the CB low affinity binding site. Based on our results a tentative working model for hexose transport in L6 rat myoblasts is presented.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3