Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms

Author:

Stevens Walter J.,Krauss Morris,Basch Harold,Jasien Paul G.

Abstract

Relativistic compact effective potentials (RCEP), which replace the atomic core electrons in molecular calculations, have been derived from numerical Dirac–Fock atomic wavefunctions using shape-consistent valence pseudo-orbitals and an optimizing procedure based on an energy-overlap functional. Potentials are presented for the third-, fourth-, and fifth-row atoms of the Periodic Table (excluding the lanthanide series). The efficiency of molecular calculations is enhanced by using compact Gaussian expansions (no more than three terms) to represent the radial components of the potentials, and energy-optimized, shared-exponent, contracted-Gaussian atomic orbital basis sets. Transferability of the potentials has been tested by comparing calculated atomic excitation energies and ionization potentials with values obtained from numerical relativistic Hartree–Fock calculations. For the alkali and alkaline earth atoms, core polarization potentials (CPP) have been derived which may be added to the RCEP to make possible accurate molecular calculations without explicitly including core-valence correlating configurations in the wavefunction. Keywords: model potentials, effective core potentials, transition metals, relativistic calculations.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3