Author:
Stevens Walter J.,Krauss Morris,Basch Harold,Jasien Paul G.
Abstract
Relativistic compact effective potentials (RCEP), which replace the atomic core electrons in molecular calculations, have been derived from numerical Dirac–Fock atomic wavefunctions using shape-consistent valence pseudo-orbitals and an optimizing procedure based on an energy-overlap functional. Potentials are presented for the third-, fourth-, and fifth-row atoms of the Periodic Table (excluding the lanthanide series). The efficiency of molecular calculations is enhanced by using compact Gaussian expansions (no more than three terms) to represent the radial components of the potentials, and energy-optimized, shared-exponent, contracted-Gaussian atomic orbital basis sets. Transferability of the potentials has been tested by comparing calculated atomic excitation energies and ionization potentials with values obtained from numerical relativistic Hartree–Fock calculations. For the alkali and alkaline earth atoms, core polarization potentials (CPP) have been derived which may be added to the RCEP to make possible accurate molecular calculations without explicitly including core-valence correlating configurations in the wavefunction. Keywords: model potentials, effective core potentials, transition metals, relativistic calculations.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
2177 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献