Spatial and temporal progression of internal erosion in cohesionless soil

Author:

Moffat Ricardo123,Fannin R. Jonathan123,Garner Stephen J.123

Affiliation:

1. Department of Civil Engineering, University of Chile, Blanco Encalada 2002, Santiago, Chile.

2. Department of Civil Engineering, The University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada.

3. BC Hydro and Power Authority, 6911 Southpoint Drive, Burnaby, BC V3N 4X8, Canada.

Abstract

Permeameter tests were performed on four widely graded cohesionless soils, to study their susceptibility to internal erosion. Test specimens were reconstituted as a saturated slurry, consolidated, and then subjected to multi-stage seepage flow under increasing hydraulic gradient. The occurrence of internal instability is described qualitatively, from visual observations through the wall of the permeameter during a test and from post-test observations; it is also described quantitatively, from change of hydraulic gradient within the specimen and from axial displacement during a test. The results provide a novel insight into the spatial and temporal progression of seepage-induced internal instability. This insight yields an improved characterization of suffusion and suffosion in cohesionless soils, the progression of which appears governed by a critical combination of hydraulic gradient and effective stress.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3