The last glaciation and sea level history of Fosheim Peninsula, Ellesmere Island, Canadian High Arctic

Author:

Bell Trevor1

Affiliation:

1. Department of Geography, Memorial University of Newfoundland, St, John's, NF A1B 3X9, Canada

Abstract

The last glaciation of Fosheim Peninsula is reconstructed on the basis of landform and sediment mapping and associated radiocarbon dates. Ice growth involved the expansion of cirque glaciers and accumulation on upland surfaces that are now ice free. Limited ice buildup, despite lowering of the paleoglaciation level by 700–800 m, is attributed to the hyperaridity of the region during glacial conditions. Marine deposits in formerly submerged basins beyond the ice margins are interpreted to represent (i) sedimentation caused by local ice buildup and marine transgression by 10.6 ka BP, (ii) increased ablation and glacier runoff [Formula: see text]9.5 ka BP, and (iii) marine regression during the Holocene. Holocene marine limit reaches a maximum elevation of approximately 150 m asl along northern Eureka Sound and Greely Fiord and descends southeastwards to 139–142 m asl near the Sawtooth Mountains. A synchronous marine limit is implied where the last ice limit was inland of the sea. The magnitude and pattern of Holocene emergence cannot be fully explained by the glacioisostatic effects of the small ice load during the last glaciation of the region. Deglaciation of the peninsula was underway by 9.5 ka BP; however, local ice caps may have persisted through the wannest period of the Holocene until 6–5 ka BP. This was likely a function of reduced sea ice conditions and increased moisture availability which benefited low-lying coastal icefields, but had negligible effect on interior highland ice caps.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3