MMPEP: Development and evaluation of peptide parameters for Allinger's MMP2(85) programme, including calculations on crambin and insulin

Author:

Wolfe Saul,Weaver Donald Fredric,Yang Kiyull

Abstract

Allinger's MMP2(85) program has been converted to an IBM environment, and the dimensions expanded to a current maximum of 999 atoms. Substantial additional expansion will be possible. An all-atom set of parameters, which permit Allinger's comprehensive force field to be applied to the molecular mechanics treatment of peptides, has been determined. These parameters, termed MMPEP, contain 21 atom types: 5 for carbon, 6 for hydrogen, 5 for nitrogen, 4 for oxygen, and 1 for sulfur, and are based on crystallographic heavy atom bond lengths and bond angles, vibrational and microwave spectra, and ab initio calculations. To minimize the conformational energy of a peptide from an initial starting geometry, all internally stored parameters are released, and replaced by PEPCON, a 360-line external file containing the MMPEP parameters.The ability of the MMPEP parameterization of MM85 to reproduce experimental crystal structures has been tested on several peptides and polypeptides, and the use of a dielectric constant ε = 78.5 D leads to the following results: Ala-Ala-Gly (rms = 0.261); Gly-Gly-Val (rms = 0.349); glutathione (rms = 0.417); crambin (327 heavy atoms; rms = 0.310 for all heavy atoms); insulin (389 heavy atoms; rms = 0.646 for all heavy atoms); the origins of deviations can be interpreted. No problems have been encountered in the application of the Newton–Raphson minimization procedure to such large molecules as crambin and insulin, even though all possible nonbonded interactions have been retained. On the IBM 3081 computer, real time minimization of trip)eptides requires 1–2 min, crambin requires 250 min, and insulin 200 min. Since hydrogen bonding in Allinger's force field is a natural result of electrostatic and van der Waals interactions, in MMPEP hydrogen bonding is taken into account through the large number of hydrogen atom types and their different bond moments and van der Waals radii.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3