Author:
Hunter B. K.,Reeves L. W.
Abstract
Chemical shifts for 29Si in seven series of molecules of the type XnSiY4−n have been measured where Y is an alkyl group and X varies widely in electronegativity. A considerable amount of proton and fluorine chemical shift data has been obtained for the same compounds and in one series (CH3)nSiCl4−n the 13C chemical shifts in the methyl groups have been measured.The gross features of the 29Si chemical shifts are understood by considering the series (Alkyl)3SiX with the electronegativity of X widely varied. The hybridization at silicon is approximately conserved in these series and the theoretically anticipated linear dependence on electronegativity of X is demonstrated. The ligands X = O, N, and F are exceptional and these 29Si chemical shifts have a high field shift. This additional shielding has been associated with (p → d)π bonding. The approximate nature of present chemical shift theories is not likely to provide a measure of the order of (p → d)π bonding.The 29Si chemical shifts in the series XnSiY4−n are discussed and also indicate a net shielding effect with (p → d)π bonding. A comparison is always made with corresponding 13C chemical shifts. A long range proton–proton coupling in molecules Me3SnX and Me2SnX2, H—C—Si—C—H, is observed when and only when X = O, (N?), F.119Sn chemical shifts in a series of alkyltin compounds have been measured. The same dependence on the electronegativity of X in the series (Alkyl)3SnX is noted, but the variation of X is much more limited. Some shielding due to (p → d)π bonding in the series (n-Butyl)nSnCl4−n is suggested. The tin chemical shift has been measured as a function of concentration and solvent for simple methyltin bromides and chlorides. In donor solvents, it has been possible to obtain equilibrium constants for complex formation from tin dilution chemical shifts. The nature of the bonding in complexes suggested previously is consistent with the variations in the coupling constant |JSn–C–H| with concentration. The distinction between ionization and complex formation with the solvent for (CH3)2SnCl2 can be made on the basis of the concentration dependence of |JSn–C–H|The spin–lattice relaxation time T1for 13C and 29Si in natural abundance in several pure degassed compounds has been measured. These are not in the case of 13C (as has been suggested) of the order several minutes, but are always less than 50 s and in one case as low as 3–4 s. Both 29Si and 13C T1 values follow what might be expected on the basis of a dipole–dipole mechanism from the closest protons. The short value of 35 s in CS2 is probably a result of spin–rotation interaction in the liquid state.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
254 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献