Genes associated with dimorphism and virulence ofCandida albicans

Author:

Gow N. A. R.,Hube B.,Bailey D. A.,Schofield D. A.,Munro C.,Swoboda R. K.,Bertram G.,Westwater C.,Broadbent I.,Smith R. J.,Gooday G. W.,Brown A. J. P.

Abstract

Strategies for the analysis of a range of Candida albicans genes, whose expression is regulated during the yeast to hyphal transition (dimorphism), including genes encoding putative virulence factors, are reviewed. To help discriminate among genes whose products were the cause or consequence of dimorphism, temporal changes in the levels of the mRNAs of these and other genes were examined by northern analysis. The mRNA levels of most genes that were examined increased or decreased, transiently or persistently indicating complex alterations in gene expression during morphogenesis. Genes encoding four glycolytic enzymes were regulated transcriptionally during dimorphism but control experiments indicated no direct correlation with germ tube formation. Two chitin synthase genes (CHS2 and CHS3) and three aspartyl proteinase genes (SAP4–SAP6) were transcribed preferentially in the hyphal form, but in these cases hypha-specific expression was shown to be strain dependent or medium dependent, respectively. A gene, HYR1 (for hyphal regulation), was isolated and found to exhibit strict hypha-specific expression in a range of strains under a range of culture conditions. The ura-blaster protocol was used to generate disruptions in CHS2, CHS1, and HSP90 (for heat-shock protein). The homozygous CHS2 disruption did not affect the kinetics of germ-tube formation markedly but resulted in hyphae with a reduced chitin content. In contrast, homozygous null mutations in CHS1 and HSP90 were apparently lethal because no homozygous null strains were isolated after integrative transformation of heterozygous mutants. The analysis of candidate genes for dimorphism and virulence of C. albicans through northern analysis and gene disruption should facilitate an understanding of these processes at the molecular level. Key words: Candida, dimorphism, gene regulation, virulence.

Publisher

Canadian Science Publishing

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3