Assessing the utility of sulfur isotope values for understanding mercury concentrations in water and biota from high Arctic lakes

Author:

Lescord Gretchen L.1,Clayden Meredith G.1,Kidd Karen A.12,Kirk Jane L.3,Wang Xiaowa3,O’Driscoll Nelson J.4,Muir Derek C.G.3

Affiliation:

1. Department of Biology, Canadian Rivers Institute, University of New Brunswick, 100 Tucker Park Road, Saint John, NB E2L 4L5, Canada.

2. Department of Biology, School of Geography and Earth Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.

3. Environment and Climate Change Canada, Aquatic Contaminants Research Division, 867 Lakeshore Road, Burlington, ON L7S 1A1, Canada.

4. Department of Earth and Environmental Science, Acadia University, 32 University Avenue, Wolfville, NS B4P 2R6, Canada.

Abstract

Methylmercury (MeHg) biomagnifies through aquatic food webs resulting in elevated concentrations in fish globally. Stable carbon and nitrogen isotopes are frequently used to determine dietary sources of MeHg and to model its biomagnification. However, given the strong links between MeHg and sulfur cycling, we investigated whether sulfur isotopes (δ34S) would improve our understanding of MeHg concentrations ([MeHg]) in Arctic lacustrine food webs. Delta34S values and total mercury (THg) or MeHg were measured in water, sediments, and biota from six lakes near Resolute Bay, NU, Canada. In two lakes impacted by historical eutrophication, aqueous sulfate δ34S was ∼8‰ more positive than sedimentary δ34S, suggestive of bacterial sulfate reduction in the sediment. In addition, aqueous δ34S showed a significant positive relationship with aqueous [MeHg] across lakes. Within taxa across lakes, [THg] in Arctic char muscle and [MeHg] in their main prey, chironomids, were positively related to their δ34S values across lakes, but inconsistent relationships were found across entire food webs among lakes. Across lakes, nitrogen isotopes were better predictors of biotic [THg] and [MeHg] than δ34S within this dataset. Our results suggest some linkages between Hg and S biogeochemistry in high Arctic lakes, which is an important consideration given anticipated climate-mediated changes in nutrient cycling.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences,General Agricultural and Biological Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3