Oceanographic, ecological, and socio-economic impacts of an unusual summer storm in the Mackenzie Estuary

Author:

Scharffenberg Kevin C.1,Whalen Dustin2,MacPhee Shannon A.3,Marcoux Marianne3,Iacozza John4,Davoren Gail1,Loseto Lisa L.3

Affiliation:

1. Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.

2. Natural Resources Canada, Geological Survey of Canada, Dartmouth, NS B2Y 4A2, Canada.

3. Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada.

4. Department of Environment & Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.

Abstract

With increased warming and open water due to climate change, the frequency and intensity of storm surges is expected to increase. Although studies have shown that strong storms can negatively impact Arctic ecosystems, the impact of storms on Arctic marine mammals is relatively unknown. In July 2016, an unusually large storm occurred in the Mackenzie Delta while instrumented seabed moorings equipped with hydrophones and oceanographic sensors were in place to study environmental drivers of beluga habitat use during their summer aggregation. The storm lasted up to 88 h, with maximum wind speeds reaching 60 km/h; historical wind data from Tuktoyaktuk revealed a storm of similar duration has not occurred in July in at least the past 28 years. This provided a unique opportunity to study the impacts of large storms on oceanographic conditions, beluga habitat use, and the traditional subsistence hunt that occurs annually in the delta. The storm resulted in increased water levels and localized flooding as well as a significant drop in water temperature (∼10 °C) and caused belugas to leave the area for 5 days. Although belugas returned after the storm ended, the subsistence hunt was halted resulting in the lowest beluga harvest between 1978 and 2017.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences,General Agricultural and Biological Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3