Affiliation:
1. Department of Botany, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada.
2. Green Plant Herbarium, Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, ON M5S 2C6, Canada.
Abstract
Unlike their diploid relatives, some triploid and tetraploid Crataegus frequently produce unreduced megagametophytes. In all cases, pollination is required for successful seed set, but in polyploids, endosperm formation can involve fertilization by either one or both sperm. Apomixis, in which the egg develops parthenogenetically, is widely documented in polyploid Crataegus, and as in many other groups with gametophytic apomeiosis, fertilization of unreduced eggs can also occur. Reciprocal pollinations were made between diploids, triploids, and tetraploids belonging to five taxonomic series in the genus to evaluate opportunities for gene flow between ploidy levels. The ploidy levels of embryo and endosperm in mature seeds, estimated from flow-cytometric DNA measurements, indicate the meiotic or apomeiotic origin of the megagametophyte and whether fertilization has occurred. These experiments demonstrated that although some tetraploids maintain near-obligate apomixis when supplied with pollen from diploids, others produced seeds containing embryos ranging from diploid to hexaploid. Allotriploid embryos were produced when a diploid was provided with pollen from tetraploids. A triploid produced tetraploid embryos when pollinated by a diploid and pentaploid embryos when pollinated by a tetraploid. Gametophytic apomixis in Crataegus thus can be facultative or near-obligate and may be implicated in the formation of interserial hybrids.
Publisher
Canadian Science Publishing
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献