Seed banks of an Arizona Pinus ponderosa landscape: responses to environmental gradients and fire cues

Author:

Abella Scott R.12,Springer Judith D.12,Covington W. Wallace12

Affiliation:

1. Public Lands Institute and School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154-2040, USA.

2. Ecological Restoration Institute, Northern Arizona University, Flagstaff, AZ 86011-5017, USA.

Abstract

We measured soil seed banks in 102 plots within a 110 000 ha Arizona Pinus ponderosa landscape, determined seed-bank responses to fire cues and tree canopy types (open or densely treed patches), compared seed-bank composition among ecosystem types, and assessed the utility of seed banks for ecological restoration. Liquid smoke was associated with increased community-level emergence from seed banks in greenhouse experiments, whereas heating to 100 °C had minimal effect and charred P. ponderosa wood decreased emergence. We detected 103 species in seed-bank samples and 280 species in aboveground vegetation. Erigeron divergens was the commonest seed-bank species; with the exception of Gnaphalium exilifolium , species detected in seed banks also occurred above ground. Although a dry, sandy-textured black-cinder ecosystem exhibited the greatest seed density, seed-bank composition was more ecosystem-specific than was seed density. Native graminoids (e.g., Carex geophila and Muhlenbergia montana ) were common in seed banks, whereas perennial forbs were sparse, particularly under dense tree canopies. Our results suggest that (i) smoke may increase emergence from seed banks in these forests, (ii) seed banks can assist establishment of major graminoids but not forbs during ecological restoration, and (iii) seed-bank composition is partly ecosystem-specific across the landscape.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3