Cyclic loading of end plate moment connections

Author:

Adey B T,Grondin G Y,Cheng J JR

Abstract

An experimental investigation of 15 cyclically loaded extended end plate connections was undertaken to assess the significance of some design parameters. The parameters investigated were beam size, bolt layout, end plate thickness, use of extension stiffeners, welding process, and weld preparation. Eleven of the 15 full-scale test specimens were designed to confine failure to the end plate and four were designed to develop the plastic moment capacity of the beam. Of the beam sizes tested (W360×51, W460×97, and W610×125) the W460×97 beam connections provided the most ductility. The relaxed bolt configuration provided more energy dissipation and connection ductility. The use of extension stiffeners improved the ability of the end plates to dissipate energy and increased the connection rotation at yield. An increase in end plate thickness results in an increase in the connection flexural strength. No significant difference in behaviour was observed between the connections fabricated using the shielded metal arc welding process and those fabricated using the flux-cored arc welding process. Bolt bending and loss of preload were observed in all the test specimens. End plate thickness prediction equations proposed by various researchers were evaluated by comparing predicted plate thickness with plate thickness used for the test specimens. New prediction equations that use yield lines in close agreement with those observed in the test specimens are proposed. The proposed prediction equations are able to predict the thickness of the end plate to within 13%. The proposed prediction equations are applicable to stiffened and unstiffened end plate moment connections with various bolt layouts. Extended end plate moment connections showed good potential for use in seismic zones.Key words: cyclic loading, energy absorption, extended end plates, moment connections, steel, yield line.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3