DNA passage to nuclei: role of endo-lysosomal circuit in eukaryoticDictyostelium

Author:

Vats Bhavesh1,Padh Harish1

Affiliation:

1. Department of Cell and Molecular Biology, B.V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Thaltej–Gandhinagar Highway, Thaltej, Ahmedabad 380054, India.

Abstract

The understanding of DNA passage in eukaryotic cells is still very ambiguous. The route to the nucleus is difficult owing to the barriers, metabolic as well as membranous, posed by the eukaryotic cells. Endocytosis appears to be the most likely process responsible for the transport but is also the major culprit of low transfection efficiencies. Here, we report a study on a eukaryotic amoeba, Dictyostelium discoideum , where by disruption of the endocytic process at the opportune moment, the transformant number increased. We have observed that by disruption of fluid-phase uptake of calcium phosphate DNA nanoparticles, the number of clones increased with the probable increase in number of foreign genes integrating in the host genome. The method described here leads to the possibility of safe and inexpensive methods for transfer of genes required for heterologous recombinant protein production as well as generating therapeutic recombinant cells.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Glimpses of Dictyostelid research in India;The International Journal of Developmental Biology;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3