Short-day treatment alters Douglas-fir seedling dehardening and transplant root proliferation at varying rhizosphere temperatures

Author:

Jacobs Douglass F.12,Davis Anthony S.12,Wilson Barrett C.12,Dumroese R. Kasten12,Goodman Rosa C.12,Salifu K. Francis12

Affiliation:

1. Hardwood Tree Improvement and Regeneration Center, Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA.

2. USDA Forest Service, Southern Research Station, Moscow, ID 83843, USA.

Abstract

We tested effects of shortened day length during nursery culture on Douglas-fir ( Pseudotsuga menziesii var. menziesii (Mirb.) Franco) seedling development at dormancy release. Seedlings from a 42°N source were grown either under ambient photoperiods (long-day (LD)) or with a 28 day period of 9 h light : 15 h dark photoperiods (short-day (SD)). Seedlings were periodically removed from freezer storage from January to May. Sensitivity of plant tissues to cold temperatures was investigated via electrolyte leakage at nine test temperatures ranging from 2 to –40 °C. New root growth was assessed with rhizosphere temperatures of 10, 15, 20, and 25 °C. From 2 to –13 °C, there was no difference between treatments in cold hardiness. However, at or below –18 °C, LD seedlings exhibited higher indices of damage than SD seedlings. The LT50 (temperature at which 50% cell electrolyte leakage occurred) was consistently lower for SD than LD seedlings. Rhizosphere temperature differentially influenced new root proliferation: LD seedlings had greater new root production than SD seedlings at 20 °C, whereas the opposite response was detected at 10 °C. Our results confirm photoperiod sensitivity of Douglas-fir sources from relatively low (i.e., <45°N) latitudes. Increased spring cold hardiness and greater rooting at lower rhizosphere temperatures may improve field performance potential of SD-treated seedlings.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3