The hydrolyses of benzamides, methylbenzimidatium ions, and lactams in aqueous sulfuric acid. The excess acidity method in the determination of reaction mechanisms

Author:

Cox Robin A.,Yates Keith

Abstract

The excess acidity method has been applied to hydrolysis rate data for a number of benzamides, methylbenzimidatium ions, and lactams, obtained as a function of sulfuric acid concentration and temperature. All of the substrates studied except β-propiolactam (8) and methyl-2,6-dimethylbenzimidatium ion (7) were found to follow the AOT2 mechanism at all acidities. The excess acidity method provided considerable mechanistic detail; in dilute acid the transition state contains O-protonated (or methylated) substrate and three water molecules (large negative ΔS), but in more concentrated solutions a one-water-molecule mechanism takes over (smaller negative ΔS). In strong acid bisulfate ion acts as the nucleophile (positive ΔS). N-protonated intermediates are not involved for "normal" substrates, being observed in this work only for 8, which follows the AND1 pathway. Observed differences between benzamide and methylbenzimidatium ion (4) hydrolyses are due to their differing activity coefficient behaviour, the mechanism being the same for both. The hydrolysis of 7 involves a one-water-molecule SN2 displacement at the O-methyl group. Comparison with 7 shows that this displacement is not likely to occur under the reaction conditions for 4; however, for the N-methyl and N,N-dimethyl derivatives studied it is probably an important reaction pathway. A comprehensive mechanistic framework for amide hydrolyses in strong acid media is given.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3