Breast cancer cells adapt to metabolic stress by increasing ethanolamine phospholipid synthesis and CTP:ethanolaminephosphate cytidylyltransferase-Pcyt2 activity

Author:

Zhu Lin1,Bakovic Marica1

Affiliation:

1. Department of Human Health and Nutritional Sciences, University of Guelph, ON N1G 2W1, Canada.

Abstract

The significance of phosphatidylethanolamine (PE) in breast cancer cell metabolism was investigated under stress conditions caused by serum deficiency. Serum deficient MCF-7 cells adapt to stress conditions by increasing synthesis and content of PE and diacylglycerol (DAG). The biosynthesis of PE from DAG and ethanolamine was regulated at the level of formation of CDP-ethanolamine, the metabolic step catalyzed by Pcyt2. The catalytic activity of Pcyt2 was elevated 2–3-fold, yet the enzyme remained rate-limiting in serum-deficient cells. Contributions to the elevated Pcyt2 activity included transcriptional and translational components. The mRNA levels of two splice variants, Pcyt2α and Pcyt2β, were 1.5–3-fold higher in deficient cells. The total amounts of Pcyt2 and Pcyt2α proteins were similarly elevated 1.5–2.5-fold. In vivo [γ32Pi] radiolabeling revealed that Pcyt2 was additionally regulated by phosphorylation. Under unfavorable metabolic conditions, both endogenous and His/Myc-tagged Pcyt2 were increasingly phosphorylated at Ser residues. The results established that elevated DAG formation and the increased activity of the rate-regulatory enzyme Pcyt2 were critical modulators of the PE Kennedy pathway, and total PE content in serum deprived breast cancer cells. Therefore, as an essential gene sensitive to nutritional microenvironment, Pcyt2 could represent a legitimate target in novel metabolic strategies for cancer.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3