A new interparticle friction apparatus for granular materials

Author:

Cavarretta I.1,Rocchi I.1,Coop M.R.1

Affiliation:

1. (Formerly) Imperial College, London, UK.

Abstract

A new apparatus is described that measures interparticle friction between sand-sized grains over relatively large displacements and also under immersion in a fluid. Its relatively simple design allows the key calibrations to be checked by statics. An analysis of the geometry of simple spherical particle contacts and the forces at those contacts revealed that there are strict constraints on the permissible stiffness of the interparticle friction apparatus to avoid stick–slip behaviour. Tests on ball bearings gave highly repeatable data, while others on glass ballotini revealed a significant effect of ambient humidity on the data obtained. The interparticle friction was found to increase with the roughness of the ballotini. Immersion in water increased the interparticle friction slightly for both the ballotini and quartz sand particles, while immersion in oil reduced the friction considerably for the quartz sand, especially at higher contact force levels.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Reference16 articles.

1. Barton, R.R. 1972. A study of the angle of interparticle friction of sands with respect to its influence on the mass strength. M.Sc. dissertation, The Victoria University of Manchester, Manchester, UK.

2. Bromwell, L.G. 1966. The friction of quartz in high vacuum. Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, Mass. Research report R66-18.

3. Cavarretta, I. 2009. The influence of particle characteristics on the engineering behaviour of granular materials. Ph.D. thesis, Department of Civil and Environmental Engineering, Imperial College, London.

4. The influence of particle characteristics on the behaviour of coarse grained soils

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3