Multiscale modeling of longleaf pine (Pinus palustris)

Author:

Loudermilk E. Louise12,Cropper Wendell P.12

Affiliation:

1. School of Natural Resources and Environment, University of Florida, P.O. Box 110410, Gainesville, FL 32611, USA.

2. School of Forest Resources and Conservation, University of Florida, P.O. Box 110410, Gainesville, FL 32611, USA.

Abstract

There are few remaining longleaf pine ( Pinus palustris Mill.) ecosystems left in the southeastern coastal plain of the United States. Restoration and maintenance of these remaining habitats requires an understanding of ecosystem processes at multiple scales. The focus of this study was to develop and evaluate a modeling framework for analyzing longleaf pine dynamics at the spatially explicit landscape scale and at the spatially implicit population scale. The landscape disturbance and succession (LANDIS) model was used to simulate landscape fire dynamics in a managed forest in north-central Florida. We constructed a density-dependent longleaf pine population matrix model using data from a variety of studies across the southeastern United States to extend an existing model. Sensitivity analyses showed that the most sensitive parameters were those from the original pine model, which was based on extensive observations of individual trees. A hybrid approach integrated the two models: the fire frequencies output from the LANDIS model were input to the matrix model for specific longleaf pine populations. These simulations indicated that small isolated longleaf pine populations are more vulnerable to fire suppression and that landscape connectivity is a critical concern. A frequent prescribed fire regime is nonetheless necessary to maintain even large longleaf pine sandhill communities that have better landscape connectivity.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Reference43 articles.

1. Agency of Fire in Propagation of Longleaf Pines

2. Boyer, W.D. 1990. Pinus palustris Mill. longleaf pine. In Silvics of North America. Vol. 1. Conifers. USDA For. Serv. Agric. Handb. 654. pp. 405–412.

3. Gap-phase regeneration in longleaf pine wiregrass ecosystems

4. Case, T.D. 2000. An illustrated guide to theoretical ecology. Oxford press, Oxford, N.Y.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3