Time evolution and thermodynamics for a nonequilibrium system in phase-space

Author:

Wu Chen-Huan11

Affiliation:

1. College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China.

Abstract

The integrable system is constrained strictly by the conservation law during the time evolution, and the prethermal state from the nearly integrable system is also constrained by the conserved parameters (the constants of motion) with the corresponding generalized Gibbs ensemble (GGE), which is indubitably a powerful tool in the prediction of the relaxation dynamics. For stochastic evolution dynamics with considerable noise, the two-point correlation of local operators (like the density of kinks or transverse magnetization correlators), which do not exhibit the thermal features, display the behaviors of nonthermalization and an asymptotic GGE. In fact it is an asymptotic quasi-steady state with an infinite temperature, therefore the required distance to the nonthermal steady state is in an infinite time average. In this paper, we unambiguously investigate the relaxation of a nonequilibrium system in a canonical ensemble for integrable and nonintegrable systems. Temporal behavior of the many-body quantum system and the corresponding linear-coupling between the harmonic oscillators are discussed. The matrix-method in entropy ensemble is utilized to discuss the boundary and the diagonalization algebraically. The approximation results for nonintegrable system under the considerable perturbations are also presented.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3