Affiliation:
1. Department of Mathematics, Quaid-i-Azam University, Islamabad 44000, Pakistan.
Abstract
This paper examines the steady two-dimensional Carreau nanofluid flow over a stretching surface with infinite shear rate viscosity. The effects of Brownian motion and thermophoresis under the influence of convectively heated surface are analyzed. Using suitable transformations, nonlinear partial differential equations are transformed into ordinary differential equations and solved numerically using the Runge–Kutta–Fehlberg method coupled with the shooting technique. The effects of various physical parameters like local Weissenberg number (We), thermophoresis parameter (Nt), Brownian motion parameter (Nb), Prandtl number (Pr), Lewis number (Le), viscosity ratio parameter (β*), and Biot number (γ*) on the temperature and nanoparticle concentration distributions are displayed graphically and discussed quantitatively. Generally, our results reveal that temperature and nanoparticle concentration distributions are marginally influenced by the viscosity ratio parameter. Further, it is noted that augmented values of viscosity ratio parameter thin the boundary layer thickness in shear thinning fluid and the reverse is true for shear thickening fluid.
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献