Five-dimensional spherical symmetric perfect fluid collapse in f(R, T) gravity

Author:

Amir M. Jamil11,Sattar Sadia11

Affiliation:

1. Department of Mathematics, University of Sargodha, Sargodha-40100, Pakistan.

Abstract

This paper contains the study of spherically symmetric perfect fluid collapse in the framework of f(R, T) modified theory of gravity using five-dimensional background. We consider the five-dimensional spherical symmetric metric as the interior region and a five-dimensional Schwarzschild metric as an exterior region. The Darmois junction conditions between exterior and interior regions are discussed. By taking the particular f(R, T) model, the corresponding field equations are evaluated for both marginally bound L(r) = 1 and non-marginally bound L(r) ≠ 1 cases. We find the gravitational mass of the collapsing system and discuss the apparent horizons and their time formation for different possible cases. Also, the cosmological and black hole horizons have been discussed. It has been concluded that the term involving λ plays a double role: it accelerates the collapse in the region where ρ0 < 4p0 and it slows down the collapsing of matter when ρ0 > 4p0. Further, it is noted that our results reduce to the results found by Sharif and Ahmad (J. Korean Phys. Soc. 52, 980 (2008). doi: 10.3938/jkps.52.980) in general relativity for λ = 0.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Reference50 articles.

1. S.W. Hawking and G.F.R. Ellis. The large scale structure of spacetime. Cambridge University Press, Cambridge. 1975.

2. Schwarzschild black hole lensing

3. Gravitational lensing by naked singularities

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quasi-spherical gravitational collapse in f(R,T) gravity;International Journal of Modern Physics A;2024-06-10

2. Scale covariant theory as a dark energy model;International Journal of Geometric Methods in Modern Physics;2023-04-06

3. Homogeneous perfect fluid collapse in five-dimensional spherically symmetric spacetime;Modern Physics Letters A;2021-08-06

4. Non-adiabatic gravitational collapse in f(R,T) gravity with Karmarkar condition for anisotropic fluid;Modern Physics Letters A;2020-02-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3