Abstract
The incorporation of acetate-1-14C into fatty acids by isolated epididymal adipose tissue of fed and fasted rats adapted to a single daily 2-hour meal (meal eaters) or fed ad libitum (nibblers) was investigated. Fasting (22 hours) markedly depressed lipogenesis whereas fatty acid synthesis increased linearly with time of refeeding in meal-fed but not in nibbling rats. The activities of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and NADP-malic dehydrogenase in adipose tissue of meal-fed or nibbling rats were not altered as a consequence of a 22-hour fast or of subsequent feeding for 2 hours. The incorporation of acetate-1-l4C into fatty acids by adipose tissue of fasted meal-eating or nibbling animals was markedly enhanced by the addition of unlabeled pyruvate or oxaloacetate to the incubation medium. This stimulatory effect was not observed with adipose tissue front fed meal-eating rats. The addition of unlabeled glucose and insulin to the incubation medium markedly enhanced acetate-1-14C incorporation into fatty acids by isolated adipose tissue and completely overcame any effect of fasting. Adipose tissue converted pyruvate-1-14C, -2-14C, or -3-14C to fatty acids and glyceride-glycerol. The results obtained are consistent with the functioning of a pathway in adipose tissue involving mitochondrial carboxylation of pyruvate to oxaloacetate, and equilibration of the newly formed oxaloacetate with malate and fumarate, followed by cytoplasmic conversion of oxaloacetate to phosphoenol pyruvate. The data are interpreted to support a control mechanism in which fatty acid synthesis is inhibited by tissue fatty acids and fatty acyl-CoA derivatives. The inhibition could in turn be reduced by the availability of α-glycerophosphate, for the esterification of fatty acids. This control mechanism is proposed as the explanation for the refeeding response observed in adipose tissue of meal-fed rats.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Pharmacology,General Medicine,Physiology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献