Modulation of L-type Ca2+ channels in neonatal rat heart by a novel Ca2+ channel agonist

Author:

Chahine Mohamed,Sculptoreanu Adrian,Varma Daya R

Abstract

L-type Ca2+ channels are essential in triggering the intracellular Ca2+ release and contraction in heart cells. In this study, we used patch clamp technique to compare the effect of two pure enantiomers of L-type Ca2+ channel agonists: (+)-CGP 48506 and the dihydropyridine (+)-SDZ-202 791 in cardiomyocytes from rats 2–5 days old. The predominant Ca2+ current activated by standard step pulses in these myocytes was L-type Ca2+ current. The di hy dro py ri dine antagonist (+)-PN200-110 (5 μM) blocked over 90% of Ca2+ currents in most cells tested. CGP 48506 lead to a maximum of 200% increase in currents. The threshold concentration for the CGP effect was at 1 μM and the maximum was reached at 20 μM. SDZ-202 791 had effects in nanomolar concentrations and a maximum effect at about 2 μM. The maximal effect of (+)-SDZ-202 791 was a 400% increase in the amplitude of Ca2+ currents and was accompanied by a 10–15 mV leftward shift in the voltage dependence of activation. CGP 48506 increased the currents equally at all voltages tested. Both compounds slowed the deactivation of tail currents and lead to the appearance of slowly activating and slowly deactivating current components. However, SDZ-202 791 had larger effects on deactivation and CGP 48506 had larger effect on the rate of Ca2+ current activation. The effect of SDZ-202 791 was fully additive to that of CGP 48506 even after maximum concentrations of CGP. This observation suggests that the two Ca2+ channel agonists may act at two different sites on the L-type Ca2+ channel. We suggest that CGP 48506 would be a potential cardiotonic agent without the deleterious proarrhythmic effects attributable to the dihydropyridine agonists.Key words: heart failure, calcium channels, dihydropyridine, CGP 48506 (5-methyl-6-phenyl-1, 3,5,6-tetra hydro-3,6-methano-1,5-benzodiazocine-2,4-dione).

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3