STUDIES IN THE POLYOXYPHENOL SERIES: VIII. THE OXIDATION OF SUBSTANCES RELATED TO VANILLIN WITH SODIUM CHLORITE AND CHLORINE DIOXIDE

Author:

Logan C. D.,Husband R. M.,Purves C. B.

Abstract

The research confirmed the fact that chlorine dioxide and sodium chlorite were not equivalent in their oxidizing properties. At 22 °C. or less, the oxidation of pyrogallol by aqueous sodium chlorite at pH 6 was very slow, but became very rapid on the acid side of pH 3.5. The amorphous, colored products probably did not include purpurogallin. Under similar circumstances p-hydroxybenzaldehyde was unaffected at pH 6; 22% was oxidized to p-benzoquinone (Dakin's reaction) at pH 5, and this amount increased to 39% at pH 1. The yield of benzoquinone was about 24% regardless of pH within the above range when aqueous chlorine dioxide was the oxidant. Sodium chlorite at pH 0.9 produced a 91% yield of methoxy-p-quinone from methoxy-p-hydroquinone; at pH 4 this product was mixed with 56% of 4,4′-dimethoxydiquinone, but near pH 6 a slower oxidation did not proceed beyond 4,4′-dimethoxyquinhydrone. Aqueous chlorine dioxide yielded at least 92% of monomeric methoxyquinone at all pH values between 1 and 6, probably in accord with the equation,[Formula: see text] The simultaneous formation of hydrogen peroxide was suspected, but not proved. In sharp distinction to the behavior of free phenols, veratraldehyde was not oxidized by aqueous chlorine dioxide between pH 6 and pH 3, but at pH 1 a slow reaction yielded up to 15% of veratric acid. Sodium chlorite produced about 92% of the same acid at pH 1 and pH 4, but its action was negligible at pH 5. Since by-product chlorine dioxide was ineffective at pH 4, it was possible to confirm the validity of the Jeanes–Isbell equation for the reduction of chlorous acid:[Formula: see text]The oxidation of acetylated vanillin was complicated by the occurrence of deacetylation. Red, chlorinated oils with quinoidal properties were also formed in most of the above oxidations.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3