Differential effects of a flexor nerve input on the human soleus H-reflex during standing versus walking

Author:

Capaday C.,Lavoie B. A.,Comeau F.

Abstract

A conditioning (C) stimulus at group I strength was delivered during standing to the common peroneal (CP) nerve before a test (T) stimulus at several C–T intervals ranging from 0 to 150 ms. At sufficiently long C–T intervals (100–120 ms) the soleus H-reflex was strongly inhibited despite little, or no change, in the background level of EMG activity. This finding indicates that a significant portion of the inhibition occurs at a premotoneuronal level, likely via presynaptic inhibition of the Ia-afferent terminals. During standing, at C–T intervals of 100–120 ms (optimal C–T interval) a conditioning stimulus to the CP nerve of 1.5 times motor threshold (MT) intensity reduced the soleus H-reflex by an average of 45.8% (n = 14 subjects). The conditioning stimulus always produced a clear inhibition of the H-reflex during standing at these C–T intervals. The effects of this conditioning stimulus on the soleus H-reflex were then determined in the early part of the stance phase of walking. In contrast to standing, the conditioning stimulus produced little or no inhibition during the early part of the stance phase of walking (average inhibition 45.8 vs. 11.6%, n = 14 subjects). The soleus background EMG, and the soleus and tibialis anterior M-waves were essentially the same during standing and walking. Furthermore, there was no shift of the optimal C–T interval during walking. The difference in the effects of the conditioning stimulus was not due to differences in the size of the test H-reflex in each task. It appears to be due to a genuine task-dependent change in the input–output properties of the underlying spinal cord circuits. There are at least two, mutually compatible, explanations of these results. Firstly, during walking the intraspinal terminals of the afferent fibres (group Ia and Ib) conducting the conditioning volley may be presynaptically inhibited, or their input gated at the interneuronal level. Secondly, on the assumption that the conditioning stimulus is acting via the presynaptic inhibitory network in the spinal cord, it is possible that during walking this network is saturated as a result of increased central or peripheral synaptic inputs. Finally, it seems unlikely that differences in the refractoriness of the CP nerve between the tasks may be involved; the reasons for this are presented in the discussion.Key words: Ia afferents, motoneurons, presynaptic inhibition, EMG, posture, locomotion, spinal cord.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3