Motoneurones "Learn" and "Forget" Physical Activity

Author:

Gardiner Phillip,Beaumont Eric,Cormery Bruno

Abstract

In spite of our knowledge of activity related adaptations in supraspinal neurones and skeletal muscles, very little is known concerning adaptations in α-motoneurones to alterations in chronic activity levels. Recent evidence shows that the biophysical properties of α-motoneurones are plastic and adapt to both increases and decreases in chronic activation. The nature of the adaptations-in resting membrane potential, spike threshold, afterhyperpolarization amplitude, and rate of depolarization during spike generation-point to involvement of density, type, location, and/or metabolic modulation of ion conductance channels in the motoneuronal membrane. These changes will have significant effects on how motoneurones respond when activated during the generation of movements, and on the effort required to sustain activation during prolonged exercise. Since the adaptations most likely involve structural changes in the motoneurones and changes in protein synthesis, and change the output response of the cells to input, they are considered to be learning responses. Future research directions for examining this issue are outlined. Key words: α-motoneurones, exercise, training, spinal cord, learning, disuse, spinal cord transection

Publisher

Canadian Science Publishing

Subject

Orthopedics and Sports Medicine,Physiology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3