A study of the intermolecular branch frequency dependence of tie-chain concentration in single-site linear low-density polyethylene blown films by a new FTIR method

Author:

Wang Mingtao123,Li Nan123,Choi Phillip123,Zhang Yaolin123

Affiliation:

1. Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.

2. Department of Chemical & Materials Engineering, University of Alberta, Edmonton, AB T6G 2V4, Canada.

3. FPInnovations – Forintek Divisions, 319 rue Franquet, Québec, QC G1P 4R4, Canada.

Abstract

The relative concentrations of tie chains (TCs) in six single-site linear low-density polyethylene blown films (LLDPE) were measured using a polarized Fourier transform infrared (FTIR) technique along with a newly developed sample preparation strategy. Before the FTIR measurements, the films were first subjected to a tensile strain of 20% using a homemade appliance and then annealed at a temperature of 60 °C over a time period of 24 h to relax all nonTCs in the amorphous phase. The relative TC concentrations were inferred from the FTIR measurement of the orientation order of the amorphous chains in the stretched films. It is believed that a greater concentration of TCs leads to a higher orientation order for the amorphous chains. The results showed that the quantity of TCs is essentially determined by the chains with the appropriate branch frequency (∼12 branches per 1000 backbone carbons based upon the films used in this work), especially those of the high molar mass chains as formation of TCs requires suitable ethylene sequence lengths between branches. The dart impact strength of the films appeared to be positively related to the relative concentration of TCs; films with greater concentrations showed higher dart impact strength. No clear correlations were observed between the relative concentration of TCs and the tear resistance of the films. However, the TC concentration seems to be related to the magnitude of the difference between the transverse direction and machine direction tear resistance.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3