Exercise- and Insulin-Stimulated Muscle Glucose Transport: Distinct Mechanisms of Regulation

Author:

Khayat Zayna A.,Patel Nish,Klip Amira

Abstract

In mammals, skeletal muscle is the primary target for the stimulation of glucose transport by a variety of activators. These include the hormone insulin and stimuli which increase energy demand such as exercise, hypoxia, and challenges to the oxidative chain. While it is known that both stimuli rapidly elevate glucose uptake into muscle by signalling the translocation of glucose transporters from intracellular stores to the plasma membrane, there are numerous contrasts between energy stressors and insulin in their mechanisms of glucose transport activation. Exercise and insulin recruit distinct intracellular pools of glucose transporters in skeletal muscle and the maximal effects of contraction and insulin are additive. Activation of phosphatidylinositol 3-kinase (PI3-K) is utilized by insulin to induce glucose transporter translocation, but does not participate in the responses to exercise or hypoxia. These findings suggest that energy stressors utilize different mechanisms from insulin to increase glucose influx; however, how these factors elicit their response is not clear. This review will summarize our current knowledge of these alternative pathways of glucose transport regulation. Emphasis is placed on the use of the mitochondrial uncoupler dinitrophenol to investigate mediators of this alternative signalling pathway in L6 muscle cells, a line used to characterize physiological responses in muscle such as glucose transport. Key words: contraction, GLUT4, cPKC, Ca2+, AMPK

Publisher

Canadian Science Publishing

Subject

Orthopedics and Sports Medicine,Physiology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3