Joint production of timber, carbon, and wildlife habitat in the Canadian boreal plains

Author:

McCarney Geoffrey R.12,Armstrong Glen W.12,Adamowicz Wiktor L.12

Affiliation:

1. Department of Rural Economy, 515 General Services Building, University of Alberta, Edmonton, AB T6G 2H1, Canada.

2. Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2H1, Canada.

Abstract

This study investigates the relationships and trade-offs between forest carbon management, sustained timber yield, and the production of wildlife habitat to provide a more complete picture of the costs and challenges faced by forest managers for a particular case study in Canada’s boreal mixedwood region. The work presented is an extension of a previously published model that analysed the joint production of timber supply and wildlife habitat using a natural disturbance model approach to ecosystem management. The primary contribution of the present study is the detailed incorporation of a carbon budget model into the framework developed previously. Using the Carbon Budget Model of the Canadian Forest Sector, dynamics specific to separate biomass and dead organic matter carbon pools are represented for individual forest cover types. Results indicate the potential for cost thresholds in the joint production of timber supply and carbon sequestration. These thresholds are linked to switch points in the decision between multiple use and specialized land management practices. Cobenefits in the production of carbon and wildlife habitat are shown to depend on ecological parameters, harvest flow regulations, and incentives for timber supply provided by the market.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Reference53 articles.

1. Apps, M.J., Bhatti, J.S., Halliwell, D.H., Jiang, H., and Peng, C.H. 2000. Simulated carbon dynamics in the boreal forest of central Canada under uniform and random disturbance regimes. In Global climate change and cold regions ecosystems. Edited by R. Lal, J.M. Kimble, and B.A. Stewart. Lewis Publishers, Boca Raton, Fla. pp. 107–122.

2. Integrating climatic change and forests: Economic and ecologic assessments

3. Nonconvexities in the production of timber, biodiversity, and carbon sequestration

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3