Affiliation:
1. SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, 710061, China.
2. Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, 310012, China.
Abstract
To investigate the mechanism by which laser irradiation enhances the chilling tolerance of wheat seedlings, seeds were exposed to different treatments, and biochemical parameters were measured. Compared with the control group, chilling stress (CS) led to an increase in the concentrations of malondialdehyde (MDA) and H2O2, and decreases in the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), catalase (CAT), peroxidase (POD), and nitric oxide synthase (NOS), and the concentrations of nitric oxide (NO) and protein. Treatment with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), sodium tungstate (ST), and NG-nitro-L-arginine methyl ester (L-NAME) followed by CS resulted in further increases in the concentrations of MDA and H2O2 and further decreases in the other parameters. However, treatment with PTIO, ST, and L-NAME followed by laser irradiation had the opposite effects on these parameters. When the seeds were treated with PTIO, ST, and L-NAME followed by laser and CS, the concentrations of MDA and H2O2 were significantly lower and the other parameters were higher than in the PTIO, ST, and L-NAME plus CS groups. These results suggest that CO2 laser irradiation enhances the chilling tolerance of wheat seedlings by stimulating endogenous NO synthesis.
Publisher
Canadian Science Publishing
Subject
Horticulture,Plant Science,Agronomy and Crop Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献