Leaf and whole-plant gas exchange and water-use efficiency of chrysanthemums under HPS and LEDs during the vegetative and flower-induction stages

Author:

Leonardos Evangelos D.12,Ma Xiao12,Lanoue Jason12,Grodzinski Bernard12

Affiliation:

1. Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada

2. Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada.

Abstract

The effects of light quality on photosynthesis and transpiration of chrysanthemums during the vegetative and flowering stages are not known. Leaf and whole-plant CO2 and H2O exchanges of chrysanthemums during long-day (LD) and short-day (SD) photoperiods were measured under varying intensity levels of high-pressure sodium (HPS) and different monochromatic and multicolour light-emitting diode (LED) lights. All light sources induced leaf photosynthesis effectively, including green and orange LEDs. During both LD and SD, HPS, white, and notably orange light produced high rates of photosynthesis, whereas blue light had the lowest rates. In addition, there were only subtle changes in the response of leaf functions to light quality during flowering induction. Diurnal patterns of whole-plant net C exchange rate were similar under HPS and two commercial LED lights, one red–blue (RB) and one red–white (RW), during both LD and SD. The RB and RW LED lights were as effective at maintaining whole-plant C gain during the day as traditional HPS lights. However, in comparison to HPS, the RB and RW LEDs increased whole-plant transpiration and decreased water-use efficiency (WUE). A decrease in WUE under these LEDs was not evident from the leaf measurements, which emphasizes the importance of examining responses to light quality at the whole-plant level as well and not at the leaf level alone. In commercial production, the wavelength of supplementary lighting may heavily influence WUE and subsequent nutrient uptake, and ultimately growth and quality of cut flower crops.

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3