Widespread herbicide resistance in pigweed species in Ontario carrot production is due to multiple photosystem II mutations

Author:

Davis Gareth12,Letarte Jocelyne12,Grainger Christopher M.12,Rajcan Istvan12,Tardif François J.12

Affiliation:

1. Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada

2. Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada.

Abstract

The apparent efficacy of linuron to control pigweeds (Amaranthus spp.) has declined in Ontario, Canada, in past decades, possibly due to resistance. Samples were collected in multiple fields across Ontario with reported linuron failure. These were characterized at the whole-plant and molecular levels. Screening with linuron revealed resistance in six out of nine green pigweed (Amaranthus powellii Wats.) populations and 36 out of 38 populations of redroot pigweed (Amaranthus retroflexus L.). Sequencing of the psbA gene showed resistant plants had mutations conferring resistance to photosystem II (PSII) inhibitors. The most commonly seen mutation was coding for a Val219Ile substitution, while other populations had Ala251Val or Phe274Val. Two populations were documented with a double mutation at Val219Ile and Phe274Val. All substitutions endowed plants with low to moderate resistance to linuron, with various levels of cross resistance to other PSII inhibitors. The double mutants were characterized by higher levels of resistance to linuron and diuron compared with each single substitution. The widespread failure of linuron to control pigweed species in many carrot fields in Ontario is due to the selection of PSII mutants. This is the first report of double mutation in psbA in any weed species and the first report of Ala251Val and Phe273Val in pigweed species. The presence of a double mutation is probably the result of continuous selection of plants already resistant due to a single mutation. Our results illustrate the need for diversified weed management strategies in crops where herbicide options are limited.

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3