Testing the suitability of thermal time models for forecasting spring wheat phenological development in western Canada

Author:

Mkhabela Manasah12,Ash Guy12,Grenier Mike12,Bullock Paul12

Affiliation:

1. Department of Soil Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.

2. Canadian Wheat Board, 423 Main Street, P.O. Box 816, Station Main, Winnipeg, MB R3C 2P5, Canada.

Abstract

Predicting crop development stages is fundamental to many aspects of agronomy (e.g., pesticides and fertilizer applications). Temperature is the main factor affecting plant development and its impact on crop development is often measured using thermal-time. We compared different thermal-time models to identify the best model for simulating spring wheat development in western Canada. Models compared include (i) North-Dakota growing-degree-day (NDGDD), (ii) growing-degree-day base-temperature zero (GDD0), (iii) growing-degree-day base-temperature five (GDD5), (iv) beta-function (BF), and (v) modified-beta-function (MBF). We utilised agro-meteorological data collected across western Canada from 2009–2011. Results showed that accumulated heat units/daily growth rates from the different models correlated well with spring wheat phenology with R2 ≥ 0.91 and P < 0.001. However, when the developed models were used to predict time (calendar-days) from planting to anthesis for cultivar AC-Barrie, the BF and MBF models performed poorly. Average predicted times from planting to anthesis by NDGDD, GDD0, GDD5, BF, and MBF models were 63, 63, 62, 65, and 64 d, respectively; while the actual observed time was 60 d. Root-mean-square error (RMSE) for NDGDD was 4 d, 5 d for GDD0 and GDD5, and 6 d for BF and MBF. These findings suggest that simple GDD-based models performed better than more complex BF-based models.

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3