Establishment of an efficient alfalfa regeneration system via organogenesis and the co-expression of Arabidopsis SOS genes improves salt tolerance in transgenic alfalfa (Medicago sativa L.)

Author:

Wang Jing12,Xu Xing3,Ma Dongmei4

Affiliation:

1. School of Agronomy, Ningxia University, Yinchuan, Ningxia 750021, People’s Republic of China.

2. NingXia Vocational Technical College of Industry and Commerce, Yinchuan, Ningxia 750021, People’s Republic of China.

3. Ningxia University, Yinchuan, Ningxia 750021, People’s Republic of China.

4. Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, Ningxia 750021, People’s Republic of China.

Abstract

The Salt Overly Sensitive (SOS) signal transduction pathway is pivotal in Na+ efflux and facilitates ion transport and homeostasis for improved salt tolerance in plants. Ten alfalfa varieties were used as experimental materials and two alfalfa regeneration systems were established and optimized. Cotyledons and hypocotyls were initially used as explants to induce embryogenic callus via the indirect production of somatic embryos to establish a callus acceptor system. Cotyledonary nodes were used as explants to induce adventitious bud formation via direct organogenesis, thereby establishing an in vitro regeneration system that could be used for the genetic transformation. Agrobacterium-mediated transformation of the cotyledonary nodes of the alfalfa ‘Golden Empress b’ was used to generate 25 independent sources of transformed plants exhibiting herbicide tolerance. Four of the positive transgenic plants were randomly selected for southern blot analysis, and three hybridization signals with one or two copies were detected. Reverse transcription polymerase chain reaction showed that the Bialaphos resistance (Bar) and SOS1 genes were expressed in transgenic plants and that multiple exogenous salt-tolerant genes were integrated into the transgenic plant genome and expressed at the transcriptional level. The overexpression of Arabidopsis SOS genes in alfalfa conferred a high degree of salinity tolerance, enhanced plant growth, lowered the accumulation of Na+, increased the accumulation of K+ in the leaves, and altered physiological and biochemical parameters in response to salt stress.

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3