Optimal models in the yield analysis of new flax cultivars

Author:

Jia Gaofeng12,Booker Helen M.12

Affiliation:

1. Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada

2. Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada.

Abstract

Multi-environment trials are conducted to evaluate the performance of cultivars. In a combined analysis, the mixed model is superior to an analysis of variance for evaluating and comparing cultivars and dealing with an unbalanced data structure. This study seeks to identify the optimal models using the Saskatchewan Variety Performance Group post-registration regional trial data for flax. Yield data were collected for 15 entries in post-registration tests conducted in Saskatchewan from 2007 to 2016 (except 2011) and 16 mixed models with homogeneous or heterogeneous residual errors were compared. A compound symmetry model with heterogeneous residual error (CSR) had the best fit, with a normal distribution of residuals and a mean of zero fitted to the trial data for each year. The compound symmetry model with homogeneous residual error (CS) and a model extending the CSR to higher dimensions (DIAGR) were the next best models in most cases. Five hundred random samples from a two-stage sampling method were produced to determine the optimal models suitable for various environments. The CSR model was superior to other models for 396 out of 500 samples (79.2%). The top three models, CSR, CS, and DIAGR, had higher statistical power and could be used to access the yield stability of the new flax cultivars. Optimal mixed models are recommended for future data analysis of new flax cultivars in regional tests.

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3